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1. Lattice point problems

1.1. The circle problem. Let N(R) denote the number of lattice points in a circle
of radius R

N(R) := #Z2 ∩B(0, R)

where B(R) = {x ∈ R2 : |x| ≤ R}, |(x1, x2)|2 = x2
1 + x2

2. We will want to know
the asymptotic behaviour of N(R) as R → ∞. More generally, we will consider a
nice bounded domain Ω ⊂ R2, say containing the origin, and ask for the number of
lattice points in the homogeneously expanding domain RΩ for R→∞:

NΩ(R) := #Z2 ∩RΩ

The natural guess would be the area of RΩ, which is area(RΩ) = R2 area(Ω). Our
first result would be to confirm this guess; we do this only for the circle Ω = B(0, 1),
which has area π.

Proposition 1.1.

N(R) = πR2 +O(R)

We will see that the result is really in terms of the geometry of the problem:

N(R) = areaB(0, R) +O
(

length (∂B(0, R))
)

We will give two proofs, essentially similar.
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2 ZEÉV RUDNICK

1.1.1. First proof.

Proof. We consider two polygons inscribing and circumscribing the disk B(0, R):

P− ⊆ B(0, R) ⊆ P+

where

• P− is the union of all squares with unit side �p centered at lattice points
p ∈ Z2 ∩ B(0, R) so that �p ⊆ B(0, R) is wholly contained in the disk.
Hence P− ⊆ B(0, R) and areaP− ≤ πR2. Moreover

L− :=
{
p ∈ Z2 : �p ⊆ P−

}
⊆ Z2 ∩B(0, R)

• P+ is the unit of unit squares �p centered at lattice points p ∈ Z2, so that
�p ∩B(0, R) 6= ∅ intersects the disk.

Z2 ∩B(0, R) ⊆ L+ :=
{
p ∈ Z2 : �p ⊆ P+

}
Hence

#L− ≤ N(R) := #Z2 ∩B(0, R) ≤ #L+

Now because P± are unions of unit squares, their area is just the number of squares
they contain, that is #L± = areaP±. Hence

areaP− ≤ N(R) ≤ areaP+

The important observation is that every point sufficiently far from the boundary
of B(0, R) is inside a unit square �p wholly contained in B(0, R), so that

P− ⊇ B(0, R−
√

2)

and every unit square �p that intersects B(0, R) is at distance at most R +
√

2
from the origin, so that

P+ ⊂ B(0, R+
√

2)

Hence

π(R−
√

2)2 ≤ areaP− ≤ N(R) ≤ areaP+ ≤ π(R+
√

2)2

Expanding out gives

|N(r)− πR2| ≤ 2
√

2πR+ 2π = O(R).

�

Important note: The argument works when we replace the circle B(0, R) by
the dilate RΩ of any fixed convex region with (say) smooth boundary.

1.1.2. Second proof.

Proof. We slice the ball B(0, R) by vertical lines (n, y), and count the number of
lattice points in each such line segment. The segment Ln with x-coordinate set to
be n has y running between −

√
R2 − n2 ≤ y ≤

√
R2 − n2. Now the number of

lattice points in a line segment satisfies

#{n ∈ Z : a ≤ n ≤ b} = (b− a) +O(1)
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and therefore the line segment Ln contains 2
√
R2 − n2 +O(1) lattice points. Sum-

ming over all admissible n’s, namely −R ≤ n ≤ R we get

N(R) =
∑

−R≤n≤R

(
2
√
R2 − n2 +O(1)

)
= 2

∑
−R≤n≤R

√
R2 − n2 +O(R)

= r
∑

1≤n≤R

√
R2 − n2 +O(R)

To evaluate the sum, we use summation by parts, with an = 1, f(t) =
√
R2 − t2∑

1≤n≤R

√
R2 − n2 = btc

√
R2 − t2

∣∣∣R
0

+

∫ R

0

btc t√
R2 − t2

dt

Writing btc = t+O(1), we obtain∫ R

0

btc t√
R2 − t2

dt =

∫ R

0

t2√
R2 − t2

dt+O
(∫ R

0

t√
R2 − t2

dt
)

= R2

∫ 1

0

x2

√
1− x2

dx+O(R) =
π

4
R2 +O(R)

Hence ∑
1≤n≤R

√
R2 − n2 =

π

4
R2 +O(R)

which gives N(R) = πR2 +O(R). �

The goal is to understand the remainder term in the lattice point problem

P (R) := N(R)− πR2

We saw that P (R) = O(R).

Open Problem 1. Show that for all ε > 0,

P (R) = O(R1/2+ε) = O
((

length ∂B(0, R)
)1/2+ε)

1.2. The Dirichlet divisor problem. Let d(n) = #{(a, b) : a, b ≥ 1, ab = n} be
the number of divisors of n. We have d(1) = 1, d(p) = 2 for p prime, and more
generally d(pk) = k + 1. It is a multiplicative function: d(mn) = d(m)d(n) if m,n
are coprime. Hence we get a formula in terms of the prime decomposition of n:

d(
∏
j

p
kj
j ) =

∏
j

(kj + 1)

if pj are distinct primes.
We can compute the average value of d(n) by solving a lattice point problem:

1

N

N∑
n=1

d(n) =
1

N
#{(a, b) ∈ Z2 : a, b ≥ 1, a · b ≤ N}

so we want the number of lattice points under the hyperbola xy = n and in the
positive quadrant x, y ≥ 1. Thus let

D(N) := #{(a, b) ∈ Z2 : a, b ≥ 1, a · b ≤ N}
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Theorem 1.2.
D(N) = N logN + (2C − 1)N +O(

√
N)

where C = limN→∞

(∑N
n=1

1
n − logN

)
= 0.57721 . . . is Euler’s constant.

Proof. As a first step, we try to reproduce Proof 1.1.2, by slicing the hyperbola
with vertical segments

Ln = {(n, y) : 1 ≤ y ≤ N}
each of length length(Ln) = N/n and then

D(N) =
∑

1≤n≤N

#Ln =
∑

1≤n≤N

(
length(Ln) +O(1)

)
=

∑
1≤n≤N

N

n
+O(N) = N

(
logN + C +O(

1

N
)
)

+O(N)

Thus we obtain
D(N) = N logN +O(N)

Note that the area of the hyperbolic region {(x, y) : x, y ≥ 1, x · y ≤ N} is N logN ,
so again the main term is an area. However, the remainder term O(N) falls far

short of the O(
√

area(B(0, R)) = O(R) remainder term that we obtained for the
circle problem.

1.2.1. Dirichlet’s hyperbola method: To overcome this, observe that the estimate

#Ln = length(Ln) +O(1) = N/n+O(1)

is not good if n is large. So instead, divide the hyperbolic region into three parts
(see Figure 1): A square � = {1 ≤ x, y ≤

√
N}, and two symmetric hyperbolic

regions

H1 = {(x, y) : 1 ≤ x ≤
√
N,
√
N < y ≤ N

x
}, H2 = {(x, y) : 1 ≤ y ≤

√
N,
√
N < x ≤ N

x
}

which contain the same number of lattice points. Hence

D(N) = #� + 2#H1

It is easy to compute #�:

#� =
(
b
√
Nc
)2

=
(√

N +O(1)
)2

= N +O(
√
N)

To compute H1, use the slicing method again to obtain

#H1 =
∑

1≤n≤
√
N

#{
√
N < m ≤ N

n
} =

∑
1≤n≤

√
N

(N
n
−
√
N +O(1)

)
= N

(
log
(√

N +O(1)
)

+ C +O

(
1√
N

))
−
(√

N +O(1)
)√

N +O(
√
N)

=
1

2
N logN + CN −N +O(

√
N)

Thus

D(N) = #� + 2#H1 = N +O(
√
N) + 2

(1

2
N logN + CN −N +O(

√
N)
)

= N logN + (2C − 1)N +O(
√
N)

�
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Figure 1. Dirichlet’s hyperbola method.

Open Problem 2. Show that ∆(N) = O(N1/4+ε) for all ε > 0.

2. A better remainder term

We want to show that

Theorem 2.1. P (R) := N(R)− πR2 satisfies

P (R)� R2/3

History: The exponent 2/3 was proved by different methods by Voronoi (1903),
Sierpinski (1906), van der Corput (1923). The first improvement on 2/3 = 0.6666 . . .
was to 33/50 = 0.66000 by van der Corput (1922). The have been various im-
provements over the past 100 years, the current record due to Bourgain (2017):
517/824 = 0.627427 . . . . The conjecture is that the remainder is P (R) = O(R1/2+o(1)).

We will need some basics of Fourier analysis, and estimates on oscillatory inte-
grals (van der Corput).

2.0.1. Approximate identity. Let 0 ≤ Ψ ≤ 1 be a bump function on R2, smooth,
rotationally symmetric and supported in the ball B(0, 1) of radius 1, and normalized
so that

∫
R2 Ψ(~x)d~x = 1.

We can create such a function by taking a one-dimensional even bump function
ψ ∈ C∞(−1, 1) and taking Ψ(~x) := ψ(|~x|), and normalizing appropriately so that∫
R2 Ψ(~x)d~x = 2π

∫∞
0
ψ(r)rdr = 1. (why is it possible?).

For ε > 0, set

Ψε(~x) :=
1

ε2
Ψ(
~x

ε
)

which is now supported in the ball B(0, ε) and still has total mass 1.
Note: Such a family Ψε is an approximate identity: For various classes of function

spaces, we have

f ∗Ψε → f, as ε→ 0

in the appropriate topology.
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Let χ be the indicator function of the unit ball B(0, 1), and set

χε := χ ∗Ψε

Lemma 2.2. χε is supported in B(0, 1 + ε) and coincides with χ in the smaller
ball B(0, 1− ε):

χε(~x) =

{
1, |~x| < 1− ε
0, |~x| > 1 + ε

Moreover, 0χε ≤ 1.

Proof. By definition

χε(x) =

∫
B(0,ε)

1

ε2
Ψ(
z

ε
)χ(x− z)dz

Now if |x| ≤ 1− ε and z ∈ B(0, ε) then

|x− z| ≤ |x|+ |z| ≤ 1− ε+ ε = 1

so that χ(x− z) = 1, and then

χε(x) =

∫
B(0,ε)

Ψε(z)χ(x− z)dz =

∫
B(0,ε)

Ψε(z)dz = 1.

If |x| > 1 + ε, and z ∈ B(0, ε) then

|x− z| ≥
∣∣∣|x| − |z|∣∣∣ = |x| − |z| > 1 + ε− ε = 1

and then χ(x− z) = 0, so that

χε(x) =

∫
B(0,ε)

Ψε(z)χ(x− z)dz = 0

for all x /∈ B(0, 1 + ε).
To see that 0 ≤ χε ≤ 1, just observe that since both χ and Ψ are non-negative,

so is their convolution, and since χ ≤ 1 we have

χε(x) =

∫
Ψε(z)χ(x− z)dz ≤

∫
Ψε(z) · 1 dz = 1

�

2.1. A smooth counting function. Define

Nε(R) =
∑
n∈Z2

χε(
n

R
)

which counts lattice points with the smooth weight χε. We claim that

Lemma 2.3. For 0 < ε� 1

Nε(
R

1 + ε
) ≤ N(R) ≤ Nε(

R

1− ε
)

Proof. We first show

N
(
R(1− ε)

)
≤ Nε(R) ≤ N

(
R(1 + ε)

)
Indeed, to be counted in the sum for Nε(R), we must have n/R ∈ suppχε ⊆
B(0, 1 + ε), so that |n/R| ≤ 1 + ε. Since χε ≤ 1, we obtain

Nε(R) =
∑
n∈Z2

χε(
n

R
) ≤

∑
|n|≤R(1+ε)

1 = N
(
R(1 + ε)

)
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Likewise, if |n/R| < 1− ε then χε(n/R) = 1, so that

Nε(R) ≥
∑

|n|<R(1−ε)

1 = N
(
R(1− ε)

)
Changing variables R 7→ R/(1± ε) we deduce our claim. �

2.1.1. Evaluating the smooth counting function.

Lemma 2.4.

Nε(R) = πR2 +O
( 1

ε1/2

)
Proof. We use Poisson summation to transform Nε:

Nε(R) =
∑
n∈Z2

χε(
n

R
) =

∑
m∈Z2

R2χ̂ε(Rm)

since the Fourier transform of a dilated function f(x/R) is R2f̂(Ry).
Now the Fourier transform of the convolution χε is

χ̂ε = χ̂ ∗Ψε = χ̂ · Ψ̂ε

and Ψ̂ε(y) = Ψ̂(εy), so that

χ̂ε(Rm) = χ̂(Rm)Ψ̂(Rεm)

and hence

Nε(R) =
∑
m∈Z2

R2χ̂(Rm)Ψ̂(Rεm)

= χ̂(0)R2 +R2
∑
m 6=0

χ̂(Rm)Ψ̂(Rεm)

We have

χ̂(0) =

∫
R2

χ(y)dy = areaB(0, 1) = π.

It does no great harm to pretend to that Ψ̂ is compactly supported (rather than
just rapidly decaying), so that the sum is truncated at Rε|m| � 1, or |m| < 1/(Rε).
Thus up to an error which we will estimate later ???

Nε(R) = πR2 +O
( ∑

0<|m|<(Rε)−1

R2χ̂(Rm)
)

Now we use van der Corput’s bound ??

χ̂(Rm)� (R|m|)−3/2, |m| ≥ 1

to obtain ∑
0<|m|<(Rε)−1

R2χ̂(Rm)� R1/2
∑

0<|m|<(Rε)−1

1

|m|3/2

We estimate the lattice sum (using partial summation) by the integral (exercise 1)∑
0<|m|<M

1

|m|3/2
�
∫

1<|x|<M

dx

|x|3/2
�
∫ M

1

rdr

r3/2
�M1/2

Thus

R1/2
∑

0<|m|<(Rε)−1

1

|m|3/2
� R1/2(Rε)−1/2 = ε−1/2
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which gives Nε(R) = πR2 +O(ε−1/2). �

Exercise 1. ∑
0<|m|<M

1

|m|3/2
�M1/2

We can now prove Theorem 2.1: We use Lemma 2.3 and Lemma 2.4 to deduce
that

π(
R

1 + ε
)2 +O(ε−1/2) ≤ N(R) ≤ π(

R

1− ε
)2 +O(ε−1/2)

Now

(
R

1± ε
)2 = R2(1 +O(ε)) = R2 +O(R2ε)

and so

N(R) = πR2 +O
(
R2ε+ ε−1/2

)
Choosing ε−1/2 = R2ε, that is ε = R−4/3, gives

N(R) = πR2 +O(R2/3)

as claimed.
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2.2. A lower bound. We next show that the conjectured exponent of P (R) =
O(R1/2+ε) cannot be improved, by showing

Theorem 2.5. There is some c > 0 so that there are arbitrarily large R for which
|P (R)| > cR1/2.

Let S(R) be the normalized remainder term P (R)/R1/2:

S(t) =
N(t)− πt2√

t
= t−1/2P (t)

We invoke, without providing a proof1, a series representation of S(t):

Proposition 2.6. For any T � 1, uniformly for t ∈ [T/(10), 10T ]

S(t) = − 1

π

∑
0<|~m|≤T 3/4

06=~m∈Z2

cos(2π|~m| · t+ π
4 )

|~m|3/2
+O(T−1/4+o(1))

Motivation: We saw that the Fourier transform of the unit disk played a role in
the formula for the smooth counting function. We can pretend that we can apply
Poisson summation to the sharp counting function N(R), and try to write

N(R)− πR2“ = “
∑

06=~m∈Z2

R2χ̂(R~m)

We expressed χ̂ as an oscillatory integral

χ̂(~y) =
i

2π|~y|

∫ 2π

0

〈γ̇(t),
y⊥

|y|
〉ei2π|~y|〈γ(t), ~y|~m| 〉dt

Now recall the stationary phase asymptotics of Theorem ?? (not just the van der
Corput bound),∫

A(x)eiλ(φ(x)dx ∼ eiπ4 sign(φ′′(x0))A(x0)

√
2π

|φ′′(x0)|
· e

iλφ(x0)

√
λ

, as λ→ +∞,

which give

R2χ̂(R~m) ∼ ∗R1/2 cos(2π|~m|R+ π
4 )

|~m|3/2
which is the form that appears in Proposition 2.6.

2.2.1. Proof of Theorem 2.5. . To get a lower bound on |P (R)|, it suffices to show
that there is some c > 0 so that for arbitrarily large t, we have |S(t)| > c. To do
so, we consider the integral

J(T ) := eiπ/4
∫ 2T

T

S(t)e(t)w(
t

T
)
dt

T

where w(x) ∈ C∞c [1, 2] is a smooth weight function, supported in [1, 2], and of total
mass unity:

∫
w(x)dx = 1. It suffices to show that

lim
T→∞

J(T ) = − 2

π
6= 0

since if we had S(t) = o(1) then the integral J(T ) = o(1) would also tend to zero.

1See (12.4.4) in E.C. Titchmarsh The Theory of the Riemann Zeta-function, 2nd ed., Oxford
Univ. Press, Oxford 1986.
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Plugging in Proposition 2.6, we see that

J(T ) = − 1

π

∑
0<|~m|≤T 3/4

06=~m∈Z2

1

|~m|3/2
eiπ/4

∫
cos(2π|~m| · t+

π

4
)e(t)w(

t

T
)
dt

T
+ o(1).

The integral is essentially a Fourier transform of the dilate of w:

eiπ/4
∫

cos(2π|~m| · t+
π

4
)e(t)w(

t

T
)
dt

T
=

1

2
ŵ
(
T (|~m| − 1)

)
+
i

2
ŵ
(
T (|~m|+ 1)

)
.

There are 4 vectors of norm one |~m| = 1, which contribute the term

− 1

π
4

1

2
ŵ(0) = − 2

π

∫ ∞
−∞

w(x)dx = − 2

π
.

We now use the rapid decay of the Fourier transform of the weight function w,
say |ŵ(y)| < y−10 for |y| ≥ 1, to find that for any nonzero ~m,

ŵ
(
T (|~m|+ 1)

)
� 1

(T |~m|)10

and if |~m| 6= 1, 0 then |~m| − 1 ≥
√

2− 1 > min(
√

2− 1, |~m|/2),

ŵ
(
T (|~m| − 1)

)
� 1

(T |~m|)10
, |~m| 6= 1, 0.

Hence

J(T ) = − 2

π
+O

(∑
~m 6=0

1

|~m|3/2
1

(T |~m|)10

)
.

Since the sum
∑

~m 6=0
1

|~m|3/2+10 <∞ is convergent, we find

J(T ) = − 2

π
+O(

1

T 10
)

as claimed. �
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3. Higher dimension

3.1. An Omega result. Let Nd(R) be the number of lattice points in the d-
dimensional ball of radius R:

Nd(R) = #Zd ∩B(0, R)

Arguing as in the two-dimensional case shows that

Nd(R) = ωdR
d +O(Rd−1)

where ωd = volB(0, 1). Let Pd(r) = Nd(R) − ωdRd be the remainder term. We
want to note that in dimension d ≥ 4, it is not the case that we get square root
cancellation, that is it is not true that Pd(R) is O(R(d−1)/2). To see this, we will
show that Pd(R) = Ω(Rd−2), that is there is some c > 0 and arbitrarily large R’s
so that |P (R)| > cRd−2. Thus if d− 2 > (d− 1)/2, i.e. d > 3 (so d ≥ 4), we cannot
get square root cancellation.

The reason will be that there will be arbitrarily large R’s so that on the boundary
of the sphere {|x| = R} there are � Rd−2 lattice points. Once we establish this,
we pick such a sequence of R’s, and note that

Rd−2 � #{x ∈ Zd : |x| = R} ≤ Nd(R+
1

R2
)−Nd(R−

1

R2
)

= ωd

(
(R+

1

R2
)d − (R− 1

R2
)d
)

+ Pd(R+
1

R2
)− Pd(R−

1

R2
)

= O(Rd−3) + Pd(R+
1

R2
)− Pd(R−

1

R2
)

If we assume that |Pd(R)| � Rθ then we obtain

Rd−2 � Rd−3 +Rθ

which forces θ ≥ d− 2. Thus Pd(R) = Ω(Rd−2).
Now to see that there are arbitrarily large R’s for which Zd∩{|x| = R} � Rd−2:

Let d ≥ 2, and for n ≥ 0 an integer let

rd(n) = #{x ∈ Zd :

d∑
j=1

x2
j = n}

be the number of representations of an integer n as a sum of d squares. We show
that rd(n) = Ω(n(d−2)/2) which is our claim.

Now if rd(n) = o(n(d−2)/2) then we would get

N∑
n=1

rd(n) = o(

N∑
n=1

n
d
2−1) = o(Nd/2)

But
N∑
n=1

rd(n) = Nd(
√
N) ∼ ωdNd/2

which gives a contradiction.
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3.2. Sums of d squares - a survey. The problem of understanding which integers
are sums of d squares, and if so in how many ways, is a very old topic. We will
later discuss the two dimensional case.

It is an old result that every positive integer is a sum of 4 squares (Lagrange’s
four-square theorem), so that r4(n) 6= 0 for all n ≥ 0. For prime p, we have (Jacobi)

r4(p) = 8(p+ 1)

and r4(n)/8 is multiplicative, with

r4(n) = 8
∑
d|n
4-d

d

For n odd we have r4(n) = n1+o(1). (note that this is the exponent (d−2)/2 = 1
here).

For d ≥ 5, we certainly have rd(n) ≥ r4(n) > 0. The “circle method” shows that

rd(n) ∼ Sd(n)n(d−2)/2

where the “singular series” is bounded away from zero and infinity:

0 < cd < Sd(n) < Cd <∞
The three-dimensional case is quite subtle. A celebrated result of Legendre/Gauss

asserts that n is a sum of three squares if and only if n 6= 4a(8b+7). If n = 4a then
r3(4a) = 6. It is known that r3(n) = O(n1/2+o(1)). If there are primitive lattice
points, that is x = (x1, x2, x3) with gcd(x1, x2, x3) = 1 such that x2

1 + x2
2 + x2

3 = n
(which happens if and only if n 6= 0, 4, 7 mod 8) then there is a lower bound of
r3(n) > n1/2−o(1) (Siegel’s theorem).

Exercise 2. r3(4a) = 6.
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Appendix A. Background on Fourier analysis

The Fourier transform of an L1 function on the real line (or more generally on
Rd) is defined as

F(f) = f̂(y) =

∫
Rd
f(x)e−2πix·ydx

It is clearly a linear map (but we haven’t specified the domain and range; we will
see below that it preserves the “Schwartz space” S).

An example: In dimension one, let 1[−1/2,1/2] to be the indicator function of a
unit interval (clearly not in S(R)). Then

1̂[−1/2,1/2](x) =
sin(πx)

πx

Exercise 3. In dimension 3, take f to be the indicator function of the unit ball

B(0, 1) ⊂ R3. Compute f̂ .

Answer: f̂(ξ) = − cos(2π|ξ|)
π|ξ|2 + sin(2π|ξ|)

2π2|ξ|3 .

Definition. The Schwartz space S(Rd) consisting of smooth functions f so that f
and all its derivatives decay rapidly:

S(Rd) = {f ∈ C∞(Rd) : ∀α, β ∈ Nd, sup
x∈Rd

|xα∂βf(x)| <∞}

where

xα :=

d∏
j=1

x
αj
j , ∂βf :=

∂β1+···+βdf

∂β1x1 . . . ∂βdxd
.

Clearly C∞c (Rd) ⊂ S(Rd) ⊂ Lp(Rd) for all p ≥ 1.

Exercise 4. The Gaussian g(x) = e−πx
2

lies in S(R). Show that ĝ = g.

Here are some simple and easily checked properties of the Fourier transform: For
f ∈ S,

• The Fourier transform exchanges differentiation and translation: If Tzf(x) =
f(x+ z), then

T̂zf(y) = e2πiz·xf̂(x)

and consequently converts differentiation to multiplication by 2πix:

d̂f

dx
= 2πix · f̂(x)

• Convolution:

(f ∗ g)(x) :=

∫
Rd
f(y)g(x− y)dy ⇒ f̂ ∗ g(y) = f̂(y) · ĝ(y)

• The Fourier transform intertwines dilation operators: If λ > 0, and (Dλf)(x) :=
f(x/λ), then

(̂Dλf)(y) = λdf̂(λy)

Lemma A.1. If f ∈ S then so is f̂ .
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Proof. We just treat the one-dimensional case. We need to show that f̂ and all its

derivatives decay faster than 1/|x|N for all N ≥ 1. Since ∂nf̂(x) = (−2πix)nf̂ , it

suffices to just show that f̂ is rapidly decaying. Indeed, again using the relation

∂̂nf(x) = (2πix)nf̂ gives

f̂(x) =
1

(2πix)n
∂̂nf(x)

so that

|f̂(x)| ≤ 1

(2π|x|)n

∫ ∞
−∞
|∂nf(y)|dy � ||∂

nf ||∞
|x|n

where we note that if F ∈ S then so are all its derivatives ∂nf , so in particular
∂nf ∈ L1(R). �

The main properties of the Fourier transform:

• For functions in S we have Plancherel’s formula

||f̂ ||L2(Rd) = ||f ||L2(Rd)

and since S is dense in L2, the Fourier transform extends to an isometry
F =̂: L2(Rd)→ L2(Rd).
• Fourier inversion: For f ∈ S,

(̂f̂)(x) = f(−x)

so that

f(x) =

∫
Rd
f̂(y)e2πix·ydy

• We saw that if f ∈ S then so is its Fourier transform, so is in particular
rapidly decreasing. We also saw from the example of f = 1[−1/2,1/2] that
its Fourier transform sin(πx)/πx does decay at infinity, but not rapidly.
The decay at infinity is shared by all L1 functions:

Theorem (The Riemann-Lebesgue Lemma). If f ∈ L1(Rd) then f̂(y)→ 0
as |y| → ∞.

• The Poisson summation formula:

Theorem A.2. For f ∈ S(Rd),∑
n∈Zd

f(n) =
∑
m∈Zd

f̂(m)


