THE CIRCLE PROBLEM OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY

ZEÉV RUDNICK

Contents

1. Lattice point problems 1
1.1. The circle problem 1
1.2. The Dirichlet divisor problem 3
2. A better remainder term 5
2.1. A smooth counting function 6
2.2. A lower bound 9
3. Higher dimension 11
3.1. An Omega result 11
3.2. Sums of d squares - a survey 12
Appendix A. Background on Fourier analysis 13

1. Lattice point problems

1.1. The circle problem. Let $N(R)$ denote the number of lattice points in a circle of radius R

$$
N(R):=\# \mathbb{Z}^{2} \cap B(0, R)
$$

where $B(R)=\left\{x \in \mathbb{R}^{2}:|x| \leq R\right\},\left|\left(x_{1}, x_{2}\right)\right|^{2}=x_{1}^{2}+x_{2}^{2}$. We will want to know the asymptotic behaviour of $N(R)$ as $R \rightarrow \infty$. More generally, we will consider a nice bounded domain $\Omega \subset \mathbb{R}^{2}$, say containing the origin, and ask for the number of lattice points in the homogeneously expanding domain $R \Omega$ for $R \rightarrow \infty$:

$$
N_{\Omega}(R):=\# \mathbb{Z}^{2} \cap R \Omega
$$

The natural guess would be the area of $R \Omega$, which is area $(R \Omega)=R^{2}$ area (Ω). Our first result would be to confirm this guess; we do this only for the circle $\Omega=B(0,1)$, which has area π.

Proposition 1.1.

$$
N(R)=\pi R^{2}+O(R)
$$

We will see that the result is really in terms of the geometry of the problem:

$$
N(R)=\text { area } B(0, R)+O(\text { length }(\partial B(0, R)))
$$

We will give two proofs, essentially similar.

[^0]
1.1.1. First proof.

Proof. We consider two polygons inscribing and circumscribing the disk $B(0, R)$:

$$
P_{-} \subseteq B(0, R) \subseteq P_{+}
$$

where

- P_{-}is the union of all squares with unit side \square_{p} centered at lattice points $p \in \mathbb{Z}^{2} \cap B(0, R)$ so that $\square_{p} \subseteq B(0, R)$ is wholly contained in the disk. Hence $P_{-} \subseteq B(0, R)$ and area $P_{-} \leq \pi R^{2}$. Moreover

$$
L_{-}:=\left\{p \in \mathbb{Z}^{2}: \square_{p} \subseteq P_{-}\right\} \subseteq \mathbb{Z}^{2} \cap B(0, R)
$$

- P_{+}is the unit of unit squares \square_{p} centered at lattice points $p \in \mathbb{Z}^{2}$, so that $\square_{p} \cap B(0, R) \neq \emptyset$ intersects the disk.

$$
\mathbb{Z}^{2} \cap B(0, R) \subseteq L_{+}:=\left\{p \in \mathbb{Z}^{2}: \square_{p} \subseteq P_{+}\right\}
$$

Hence

$$
\# L_{-} \leq N(R):=\# \mathbb{Z}^{2} \cap B(0, R) \leq \# L_{+}
$$

Now because $P_{ \pm}$are unions of unit squares, their area is just the number of squares they contain, that is $\# L_{ \pm}=$area $P_{ \pm}$. Hence

$$
\text { area } P_{-} \leq N(R) \leq \operatorname{area} P_{+}
$$

The important observation is that every point sufficiently far from the boundary of $B(0, R)$ is inside a unit square \square_{p} wholly contained in $B(0, R)$, so that

$$
P_{-} \supseteq B(0, R-\sqrt{2})
$$

and every unit square \square_{p} that intersects $B(0, R)$ is at distance at most $R+\sqrt{2}$ from the origin, so that

$$
P_{+} \subset B(0, R+\sqrt{2})
$$

Hence

$$
\pi(R-\sqrt{2})^{2} \leq \text { area } P_{-} \leq N(R) \leq \text { area } P_{+} \leq \pi(R+\sqrt{2})^{2}
$$

Expanding out gives

$$
\left|N(r)-\pi R^{2}\right| \leq 2 \sqrt{2} \pi R+2 \pi=O(R)
$$

Important note: The argument works when we replace the circle $B(0, R)$ by the dilate $R \Omega$ of any fixed convex region with (say) smooth boundary.

1.1.2. Second proof.

Proof. We slice the ball $B(0, R)$ by vertical lines (n, y), and count the number of lattice points in each such line segment. The segment L_{n} with x-coordinate set to be n has y running between $-\sqrt{R^{2}-n^{2}} \leq y \leq \sqrt{R^{2}-n^{2}}$. Now the number of lattice points in a line segment satisfies

$$
\#\{n \in \mathbb{Z}: a \leq n \leq b\}=(b-a)+O(1)
$$

and therefore the line segment L_{n} contains $2 \sqrt{R^{2}-n^{2}}+O(1)$ lattice points. Summing over all admissible n 's, namely $-R \leq n \leq R$ we get

$$
\begin{aligned}
N(R) & =\sum_{-R \leq n \leq R}\left(2 \sqrt{R^{2}-n^{2}}+O(1)\right) \\
& =2 \sum_{-R \leq n \leq R} \sqrt{R^{2}-n^{2}}+O(R) \\
& =r \sum_{1 \leq n \leq R} \sqrt{R^{2}-n^{2}}+O(R)
\end{aligned}
$$

To evaluate the sum, we use summation by parts, with $a_{n}=1, f(t)=\sqrt{R^{2}-t^{2}}$

$$
\sum_{1 \leq n \leq R} \sqrt{R^{2}-n^{2}}=\left.\lfloor t\rfloor \sqrt{R^{2}-t^{2}}\right|_{0} ^{R}+\int_{0}^{R}\lfloor t\rfloor \frac{t}{\sqrt{R^{2}-t^{2}}} d t
$$

Writing $\lfloor t\rfloor=t+O(1)$, we obtain

$$
\begin{aligned}
\int_{0}^{R}\lfloor t\rfloor \frac{t}{\sqrt{R^{2}-t^{2}}} d t & =\int_{0}^{R} \frac{t^{2}}{\sqrt{R^{2}-t^{2}}} d t+O\left(\int_{0}^{R} \frac{t}{\sqrt{R^{2}-t^{2}}} d t\right) \\
& =R^{2} \int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x+O(R)=\frac{\pi}{4} R^{2}+O(R)
\end{aligned}
$$

Hence

$$
\sum_{1 \leq n \leq R} \sqrt{R^{2}-n^{2}}=\frac{\pi}{4} R^{2}+O(R)
$$

which gives $N(R)=\pi R^{2}+O(R)$.
The goal is to understand the remainder term in the lattice point problem

$$
P(R):=N(R)-\pi R^{2}
$$

We saw that $P(R)=O(R)$.
Open Problem 1. Show that for all $\varepsilon>0$,

$$
P(R)=O\left(R^{1 / 2+\varepsilon}\right)=O\left((\text { length } \partial B(0, R))^{1 / 2+\varepsilon}\right)
$$

1.2. The Dirichlet divisor problem. Let $d(n)=\#\{(a, b): a, b \geq 1, a b=n\}$ be the number of divisors of n. We have $d(1)=1, d(p)=2$ for p prime, and more generally $d\left(p^{k}\right)=k+1$. It is a multiplicative function: $d(m n)=d(m) d(n)$ if m, n are coprime. Hence we get a formula in terms of the prime decomposition of n :

$$
d\left(\prod_{j} p_{j}^{k_{j}}\right)=\prod_{j}\left(k_{j}+1\right)
$$

if p_{j} are distinct primes.
We can compute the average value of $d(n)$ by solving a lattice point problem:

$$
\frac{1}{N} \sum_{n=1}^{N} d(n)=\frac{1}{N} \#\left\{(a, b) \in \mathbb{Z}^{2}: a, b \geq 1, a \cdot b \leq N\right\}
$$

so we want the number of lattice points under the hyperbola $x y=n$ and in the positive quadrant $x, y \geq 1$. Thus let

$$
D(N):=\#\left\{(a, b) \in \mathbb{Z}^{2}: a, b \geq 1, a \cdot b \leq N\right\}
$$

Theorem 1.2.

$$
D(N)=N \log N+(2 C-1) N+O(\sqrt{N})
$$

where $C=\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \frac{1}{n}-\log N\right)=0.57721 \ldots$ is Euler's constant.
Proof. As a first step, we try to reproduce Proof 1.1.2, by slicing the hyperbola with vertical segments

$$
L_{n}=\{(n, y): 1 \leq y \leq N\}
$$

each of length length $\left(L_{n}\right)=N / n$ and then

$$
\begin{aligned}
D(N) & =\sum_{1 \leq n \leq N} \# L_{n}=\sum_{1 \leq n \leq N}\left(\text { length }\left(L_{n}\right)+O(1)\right) \\
& =\sum_{1 \leq n \leq N} \frac{N}{n}+O(N)=N\left(\log N+C+O\left(\frac{1}{N}\right)\right)+O(N)
\end{aligned}
$$

Thus we obtain

$$
D(N)=N \log N+O(N)
$$

Note that the area of the hyperbolic region $\{(x, y): x, y \geq 1, x \cdot y \leq N\}$ is $N \log N$, so again the main term is an area. However, the remainder term $O(N)$ falls far short of the $O(\sqrt{\operatorname{area}(B(0, R)})=O(R)$ remainder term that we obtained for the circle problem.
1.2.1. Dirichlet's hyperbola method: To overcome this, observe that the estimate

$$
\# L_{n}=\operatorname{length}\left(L_{n}\right)+O(1)=N / n+O(1)
$$

is not good if n is large. So instead, divide the hyperbolic region into three parts (see Figure 1): A square $\square=\{1 \leq x, y \leq \sqrt{N}\}$, and two symmetric hyperbolic regions
$H_{1}=\left\{(x, y): 1 \leq x \leq \sqrt{N}, \sqrt{N}<y \leq \frac{N}{x}\right\}, \quad H_{2}=\left\{(x, y): 1 \leq y \leq \sqrt{N}, \sqrt{N}<x \leq \frac{N}{x}\right\}$ which contain the same number of lattice points. Hence

$$
D(N)=\# \square+2 \# H_{1}
$$

It is easy to compute \# \square :

$$
\# \square=(\lfloor\sqrt{N}\rfloor)^{2}=(\sqrt{N}+O(1))^{2}=N+O(\sqrt{N})
$$

To compute H_{1}, use the slicing method again to obtain

$$
\begin{aligned}
\# H_{1} & =\sum_{1 \leq n \leq \sqrt{N}} \#\left\{\sqrt{N}<m \leq \frac{N}{n}\right\}=\sum_{1 \leq n \leq \sqrt{N}}\left(\frac{N}{n}-\sqrt{N}+O(1)\right) \\
& =N\left(\log (\sqrt{N}+O(1))+C+O\left(\frac{1}{\sqrt{N}}\right)\right)-(\sqrt{N}+O(1)) \sqrt{N}+O(\sqrt{N}) \\
& =\frac{1}{2} N \log N+C N-N+O(\sqrt{N})
\end{aligned}
$$

Thus

$$
\begin{aligned}
D(N) & =\# \square+2 \# H_{1}=N+O(\sqrt{N})+2\left(\frac{1}{2} N \log N+C N-N+O(\sqrt{N})\right) \\
& =N \log N+(2 C-1) N+O(\sqrt{N})
\end{aligned}
$$

Figure 1. Dirichlet's hyperbola method.

Open Problem 2. Show that $\Delta(N)=O\left(N^{1 / 4+\varepsilon}\right)$ for all $\varepsilon>0$.

2. A Better Remainder term

We want to show that
Theorem 2.1. $P(R):=N(R)-\pi R^{2}$ satisfies

$$
P(R) \ll R^{2 / 3}
$$

History: The exponent $2 / 3$ was proved by different methods by Voronoi (1903), Sierpinski (1906), van der Corput (1923). The first improvement on $2 / 3=0.6666 \ldots$ was to $33 / 50=0.66000$ by van der Corput (1922). The have been various improvements over the past 100 years, the current record due to Bourgain (2017): $517 / 824=0.627427 \ldots$ The conjecture is that the remainder is $P(R)=O\left(R^{1 / 2+o(1)}\right)$.

We will need some basics of Fourier analysis, and estimates on oscillatory integrals (van der Corput).
2.0.1. Approximate identity. Let $0 \leq \Psi \leq 1$ be a bump function on \mathbb{R}^{2}, smooth, rotationally symmetric and supported in the ball $B(0,1)$ of radius 1 , and normalized so that $\int_{\mathbb{R}^{2}} \Psi(\vec{x}) d \vec{x}=1$.

We can create such a function by taking a one-dimensional even bump function $\psi \in C^{\infty}(-1,1)$ and taking $\Psi(\vec{x}):=\psi(|\vec{x}|)$, and normalizing appropriately so that $\int_{\mathbb{R}^{2}} \Psi(\vec{x}) d \vec{x}=2 \pi \int_{0}^{\infty} \psi(r) r d r=1$. (why is it possible?).

For $\varepsilon>0$, set

$$
\Psi_{\varepsilon}(\vec{x}):=\frac{1}{\varepsilon^{2}} \Psi\left(\frac{\vec{x}}{\varepsilon}\right)
$$

which is now supported in the ball $B(0, \varepsilon)$ and still has total mass 1 .
Note: Such a family Ψ_{ε} is an approximate identity: For various classes of function spaces, we have

$$
f * \Psi_{\varepsilon} \rightarrow f, \quad \text { as } \varepsilon \rightarrow 0
$$

in the appropriate topology.

Let χ be the indicator function of the unit ball $B(0,1)$, and set

$$
\chi_{\varepsilon}:=\chi * \Psi_{\varepsilon}
$$

Lemma 2.2. χ_{ε} is supported in $B(0,1+\varepsilon)$ and coincides with χ in the smaller ball $B(0,1-\varepsilon)$:

$$
\chi_{\varepsilon}(\vec{x})= \begin{cases}1, & |\vec{x}|<1-\varepsilon \\ 0, & |\vec{x}|>1+\varepsilon\end{cases}
$$

Moreover, $0 \chi_{\epsilon} \leq 1$.
Proof. By definition

$$
\chi_{\varepsilon}(x)=\int_{B(0, \varepsilon)} \frac{1}{\varepsilon^{2}} \Psi\left(\frac{z}{\varepsilon}\right) \chi(x-z) d z
$$

Now if $|x| \leq 1-\varepsilon$ and $z \in B(0, \varepsilon)$ then

$$
|x-z| \leq|x|+|z| \leq 1-\varepsilon+\varepsilon=1
$$

so that $\chi(x-z)=1$, and then

$$
\chi_{\varepsilon}(x)=\int_{B(0, \varepsilon)} \Psi_{\varepsilon}(z) \chi(x-z) d z=\int_{B(0, \varepsilon)} \Psi_{\varepsilon}(z) d z=1
$$

If $|x|>1+\varepsilon$, and $z \in B(0, \varepsilon)$ then

$$
|x-z| \geq||x|-|z||=|x|-|z|>1+\varepsilon-\varepsilon=1
$$

and then $\chi(x-z)=0$, so that

$$
\chi_{\varepsilon}(x)=\int_{B(0, \varepsilon)} \Psi_{\varepsilon}(z) \chi(x-z) d z=0
$$

for all $x \notin B(0,1+\varepsilon)$.
To see that $0 \leq \chi_{\epsilon} \leq 1$, just observe that since both χ and Ψ are non-negative, so is their convolution, and since $\chi \leq 1$ we have

$$
\chi_{\varepsilon}(x)=\int \Psi_{\varepsilon}(z) \chi(x-z) d z \leq \int \Psi_{\varepsilon}(z) \cdot 1 d z=1
$$

2.1. A smooth counting function. Define

$$
N_{\varepsilon}(R)=\sum_{n \in \mathbb{Z}^{2}} \chi_{\varepsilon}\left(\frac{n}{R}\right)
$$

which counts lattice points with the smooth weight χ_{ε}. We claim that
Lemma 2.3. For $0<\varepsilon \ll 1$

$$
N_{\varepsilon}\left(\frac{R}{1+\varepsilon}\right) \leq N(R) \leq N_{\varepsilon}\left(\frac{R}{1-\varepsilon}\right)
$$

Proof. We first show

$$
N(R(1-\varepsilon)) \leq N_{\varepsilon}(R) \leq N(R(1+\varepsilon))
$$

Indeed, to be counted in the sum for $N_{\varepsilon}(R)$, we must have $n / R \in \operatorname{supp} \chi_{\varepsilon} \subseteq$ $B(0,1+\varepsilon)$, so that $|n / R| \leq 1+\varepsilon$. Since $\chi_{\varepsilon} \leq 1$, we obtain

$$
N_{\varepsilon}(R)=\sum_{n \in \mathbb{Z}^{2}} \chi_{\varepsilon}\left(\frac{n}{R}\right) \leq \sum_{|n| \leq R(1+\varepsilon)} 1=N(R(1+\varepsilon))
$$

Likewise, if $|n / R|<1-\varepsilon$ then $\chi_{\varepsilon}(n / R)=1$, so that

$$
N_{\varepsilon}(R) \geq \sum_{|n|<R(1-\varepsilon)} 1=N(R(1-\varepsilon))
$$

Changing variables $R \mapsto R /(1 \pm \varepsilon)$ we deduce our claim.
2.1.1. Evaluating the smooth counting function.

Lemma 2.4.

$$
N_{\varepsilon}(R)=\pi R^{2}+O\left(\frac{1}{\varepsilon^{1 / 2}}\right)
$$

Proof. We use Poisson summation to transform N_{ε} :

$$
N_{\varepsilon}(R)=\sum_{n \in \mathbb{Z}^{2}} \chi_{\varepsilon}\left(\frac{n}{R}\right)=\sum_{m \in \mathbb{Z}^{2}} R^{2} \widehat{\chi}_{\varepsilon}(R m)
$$

since the Fourier transform of a dilated function $f(x / R)$ is $R^{2} \widehat{f}(R y)$.
Now the Fourier transform of the convolution χ_{ε} is

$$
\widehat{\chi}_{\varepsilon}=\widehat{\chi * \Psi_{\varepsilon}}=\widehat{\chi} \cdot \widehat{\Psi}_{\varepsilon}
$$

and $\widehat{\Psi}_{\varepsilon}(y)=\widehat{\Psi}(\varepsilon y)$, so that

$$
\widehat{\chi}_{\varepsilon}(R m)=\widehat{\chi}(R m) \widehat{\Psi}(R \varepsilon m)
$$

and hence

$$
\begin{aligned}
N_{\varepsilon}(R) & =\sum_{m \in \mathbb{Z}^{2}} R^{2} \widehat{\chi}(R m) \widehat{\Psi}(R \varepsilon m) \\
& =\widehat{\chi}(0) R^{2}+R^{2} \sum_{m \neq 0} \widehat{\chi}(R m) \widehat{\Psi}(R \varepsilon m)
\end{aligned}
$$

We have

$$
\widehat{\chi}(0)=\int_{\mathbb{R}^{2}} \chi(y) d y=\operatorname{area} B(0,1)=\pi .
$$

It does no great harm to pretend to that $\widehat{\Psi}$ is compactly supported (rather than just rapidly decaying), so that the sum is truncated at $R \varepsilon|m| \ll 1$, or $|m|<1 /(R \varepsilon)$. Thus up to an error which we will estimate later ???

$$
N_{\varepsilon}(R)=\pi R^{2}+O\left(\sum_{0<|m|<(R \varepsilon)^{-1}} R^{2} \widehat{\chi}(R m)\right)
$$

Now we use van der Corput's bound ??

$$
\widehat{\chi}(R m) \ll(R|m|)^{-3 / 2}, \quad|m| \geq 1
$$

to obtain

$$
\sum_{0<|m|<(R \varepsilon)^{-1}} R^{2} \widehat{\chi}(R m) \ll R^{1 / 2} \sum_{0<|m|<(R \varepsilon)^{-1}} \frac{1}{|m|^{3 / 2}}
$$

We estimate the lattice sum (using partial summation) by the integral (exercise 1)

$$
\sum_{0<|m|<M} \frac{1}{|m|^{3 / 2}} \ll \int_{1<|x|<M} \frac{d x}{|x|^{3 / 2}} \ll \int_{1}^{M} \frac{r d r}{r^{3 / 2}} \ll M^{1 / 2}
$$

Thus

$$
R^{1 / 2} \sum_{0<|m|<(R \varepsilon)^{-1}} \frac{1}{|m|^{3 / 2}} \ll R^{1 / 2}(R \varepsilon)^{-1 / 2}=\varepsilon^{-1 / 2}
$$

which gives $N_{\varepsilon}(R)=\pi R^{2}+O\left(\varepsilon^{-1 / 2}\right)$.

Exercise 1.

$$
\sum_{0<|m|<M} \frac{1}{|m|^{3 / 2}} \ll M^{1 / 2}
$$

We can now prove Theorem 2.1: We use Lemma 2.3 and Lemma 2.4 to deduce that

$$
\pi\left(\frac{R}{1+\varepsilon}\right)^{2}+O\left(\varepsilon^{-1 / 2}\right) \leq N(R) \leq \pi\left(\frac{R}{1-\varepsilon}\right)^{2}+O\left(\varepsilon^{-1 / 2}\right)
$$

Now

$$
\left(\frac{R}{1 \pm \varepsilon}\right)^{2}=R^{2}(1+O(\varepsilon))=R^{2}+O\left(R^{2} \varepsilon\right)
$$

and so

$$
N(R)=\pi R^{2}+O\left(R^{2} \varepsilon+\varepsilon^{-1 / 2}\right)
$$

Choosing $\varepsilon^{-1 / 2}=R^{2} \varepsilon$, that is $\varepsilon=R^{-4 / 3}$, gives

$$
N(R)=\pi R^{2}+O\left(R^{2 / 3}\right)
$$

as claimed.
2.2. A lower bound. We next show that the conjectured exponent of $P(R)=$ $O\left(R^{1 / 2+\varepsilon}\right)$ cannot be improved, by showing
Theorem 2.5. There is some $c>0$ so that there are arbitrarily large R for which $|P(R)|>c R^{1 / 2}$.

Let $S(R)$ be the normalized remainder term $P(R) / R^{1 / 2}$:

$$
S(t)=\frac{N(t)-\pi t^{2}}{\sqrt{t}}=t^{-1 / 2} P(t)
$$

We invoke, without providing a proof ${ }^{1}$, a series representation of $S(t)$:
Proposition 2.6. For any $T \gg 1$, uniformly for $t \in[T /(10), 10 T]$

$$
S(t)=-\frac{1}{\pi} \sum_{\substack{0<|\vec{m}| \leq T^{3 / 4} \\ 0 \neq \vec{m} \in \mathbb{Z}^{2}}} \frac{\cos \left(2 \pi|\vec{m}| \cdot t+\frac{\pi}{4}\right)}{|\vec{m}|^{3 / 2}}+O\left(T^{-1 / 4+o(1)}\right)
$$

Motivation: We saw that the Fourier transform of the unit disk played a role in the formula for the smooth counting function. We can pretend that we can apply Poisson summation to the sharp counting function $N(R)$, and try to write

$$
N(R)-\pi R^{2} "=" \sum_{0 \neq \vec{m} \in \mathbb{Z}^{2}} R^{2} \widehat{\chi}(R \vec{m})
$$

We expressed $\widehat{\chi}$ as an oscillatory integral

$$
\widehat{\chi}(\vec{y})=\frac{i}{2 \pi|\vec{y}|} \int_{0}^{2 \pi}\left\langle\dot{\gamma}(t), \frac{y^{\perp}}{|y|}\right\rangle e^{i 2 \pi|\vec{y}|\left\langle\gamma(t), \frac{\vec{y}}{|\vec{m}|}\right\rangle} d t
$$

Now recall the stationary phase asymptotics of Theorem ?? (not just the van der Corput bound),

$$
\int A(x) e^{i \lambda(\phi(x)} d x \sim e^{i \frac{\pi}{4} \operatorname{sign}\left(\phi^{\prime \prime}\left(x_{0}\right)\right)} A\left(x_{0}\right) \sqrt{\frac{2 \pi}{\left|\phi^{\prime \prime}\left(x_{0}\right)\right|}} \cdot \frac{e^{i \lambda \phi\left(x_{0}\right)}}{\sqrt{\lambda}}, \quad \text { as } \lambda \rightarrow+\infty
$$

which give

$$
R^{2} \widehat{\chi}(R \vec{m}) \sim * R^{1 / 2} \frac{\cos \left(2 \pi|\vec{m}| R+\frac{\pi}{4}\right)}{|\vec{m}|^{3 / 2}}
$$

which is the form that appears in Proposition 2.6.
2.2.1. Proof of Theorem 2.5. . To get a lower bound on $|P(R)|$, it suffices to show that there is some $c>0$ so that for arbitrarily large t, we have $|S(t)|>c$. To do so, we consider the integral

$$
J(T):=e^{i \pi / 4} \int_{T}^{2 T} S(t) e(t) w\left(\frac{t}{T}\right) \frac{d t}{T}
$$

where $w(x) \in C_{c}^{\infty}[1,2]$ is a smooth weight function, supported in [1, 2], and of total mass unity: $\int w(x) d x=1$. It suffices to show that

$$
\lim _{T \rightarrow \infty} J(T)=-\frac{2}{\pi} \neq 0
$$

since if we had $S(t)=o(1)$ then the integral $J(T)=o(1)$ would also tend to zero.

[^1]Plugging in Proposition 2.6, we see that

$$
J(T)=-\frac{1}{\pi} \sum_{\substack{0<|\vec{m}| \leq T^{3 / 4} \\ 0 \neq \vec{m} \in \mathbb{Z}^{2}}} \frac{1}{|\vec{m}|^{3 / 2}} e^{i \pi / 4} \int \cos \left(2 \pi|\vec{m}| \cdot t+\frac{\pi}{4}\right) e(t) w\left(\frac{t}{T}\right) \frac{d t}{T}+o(1)
$$

The integral is essentially a Fourier transform of the dilate of w :
$e^{i \pi / 4} \int \cos \left(2 \pi|\vec{m}| \cdot t+\frac{\pi}{4}\right) e(t) w\left(\frac{t}{T}\right) \frac{d t}{T}=\frac{1}{2} \widehat{w}(T(|\vec{m}|-1))+\frac{i}{2} \widehat{w}(T(|\vec{m}|+1))$.
There are 4 vectors of norm one $|\vec{m}|=1$, which contribute the term

$$
-\frac{1}{\pi} 4 \frac{1}{2} \widehat{w}(0)=-\frac{2}{\pi} \int_{-\infty}^{\infty} w(x) d x=-\frac{2}{\pi}
$$

We now use the rapid decay of the Fourier transform of the weight function w, say $|\widehat{w}(y)|<y^{-10}$ for $|y| \geq 1$, to find that for any nonzero \vec{m},

$$
\widehat{w}(T(|\vec{m}|+1)) \ll \frac{1}{(T|\vec{m}|)^{10}}
$$

and if $|\vec{m}| \neq 1,0$ then $|\vec{m}|-1 \geq \sqrt{2}-1>\min (\sqrt{2}-1,|\vec{m}| / 2)$,

$$
\widehat{w}(T(|\vec{m}|-1)) \ll \frac{1}{(T|\vec{m}|)^{10}}, \quad|\vec{m}| \neq 1,0
$$

Hence

$$
J(T)=-\frac{2}{\pi}+O\left(\sum_{\vec{m} \neq 0} \frac{1}{|\vec{m}|^{3 / 2}} \frac{1}{(T|\vec{m}|)^{10}}\right)
$$

Since the sum $\sum_{\vec{m} \neq 0} \frac{1}{|\vec{m}|^{3 / 2+10}}<\infty$ is convergent, we find

$$
J(T)=-\frac{2}{\pi}+O\left(\frac{1}{T^{10}}\right)
$$

as claimed.

3. Higher dimension

3.1. An Omega result. Let $N_{d}(R)$ be the number of lattice points in the d dimensional ball of radius R :

$$
N_{d}(R)=\# \mathbb{Z}^{d} \cap B(0, R)
$$

Arguing as in the two-dimensional case shows that

$$
N_{d}(R)=\omega_{d} R^{d}+O\left(R^{d-1}\right)
$$

where $\omega_{d}=\operatorname{vol} B(0,1)$. Let $P_{d}(r)=N_{d}(R)-\omega_{d} R^{d}$ be the remainder term. We want to note that in dimension $d \geq 4$, it is not the case that we get square root cancellation, that is it is not true that $P_{d}(R)$ is $O\left(R^{(d-1) / 2}\right)$. To see this, we will show that $P_{d}(R)=\Omega\left(R^{d-2}\right)$, that is there is some $c>0$ and arbitrarily large R 's so that $|P(R)|>c R^{d-2}$. Thus if $d-2>(d-1) / 2$, i.e. $d>3$ (so $d \geq 4$), we cannot get square root cancellation.

The reason will be that there will be arbitrarily large R 's so that on the boundary of the sphere $\{|x|=R\}$ there are $\gg R^{d-2}$ lattice points. Once we establish this, we pick such a sequence of R 's, and note that

$$
\begin{aligned}
R^{d-2} & \ll \#\left\{x \in \mathbb{Z}^{d}:|x|=R\right\} \leq N_{d}\left(R+\frac{1}{R^{2}}\right)-N_{d}\left(R-\frac{1}{R^{2}}\right) \\
& =\omega_{d}\left(\left(R+\frac{1}{R^{2}}\right)^{d}-\left(R-\frac{1}{R^{2}}\right)^{d}\right)+P_{d}\left(R+\frac{1}{R^{2}}\right)-P_{d}\left(R-\frac{1}{R^{2}}\right) \\
& =O\left(R^{d-3}\right)+P_{d}\left(R+\frac{1}{R^{2}}\right)-P_{d}\left(R-\frac{1}{R^{2}}\right)
\end{aligned}
$$

If we assume that $\left|P_{d}(R)\right| \ll R^{\theta}$ then we obtain

$$
R^{d-2} \ll R^{d-3}+R^{\theta}
$$

which forces $\theta \geq d-2$. Thus $P_{d}(R)=\Omega\left(R^{d-2}\right)$.
Now to see that there are arbitrarily large R 's for which $\mathbb{Z}^{d} \cap\{|x|=R\} \gg R^{d-2}$: Let $d \geq 2$, and for $n \geq 0$ an integer let

$$
r_{d}(n)=\#\left\{x \in \mathbb{Z}^{d}: \sum_{j=1}^{d} x_{j}^{2}=n\right\}
$$

be the number of representations of an integer n as a sum of d squares. We show that $r_{d}(n)=\Omega\left(n^{(d-2) / 2}\right)$ which is our claim.

Now if $r_{d}(n)=o\left(n^{(d-2) / 2}\right)$ then we would get

$$
\sum_{n=1}^{N} r_{d}(n)=o\left(\sum_{n=1}^{N} n^{\frac{d}{2}-1}\right)=o\left(N^{d / 2}\right)
$$

But

$$
\sum_{n=1}^{N} r_{d}(n)=N_{d}(\sqrt{N}) \sim \omega_{d} N^{d / 2}
$$

which gives a contradiction.
3.2. Sums of d squares - a survey. The problem of understanding which integers are sums of d squares, and if so in how many ways, is a very old topic. We will later discuss the two dimensional case.

It is an old result that every positive integer is a sum of 4 squares (Lagrange's four-square theorem), so that $r_{4}(n) \neq 0$ for all $n \geq 0$. For prime p, we have (Jacobi)

$$
r_{4}(p)=8(p+1)
$$

and $r_{4}(n) / 8$ is multiplicative, with

$$
r_{4}(n)=8 \sum_{\substack{d \mid n \\ 4 \nmid d}} d
$$

For n odd we have $r_{4}(n)=n^{1+o(1)}$. (note that this is the exponent $(d-2) / 2=1$ here).

For $d \geq 5$, we certainly have $r_{d}(n) \geq r_{4}(n)>0$. The "circle method" shows that

$$
r_{d}(n) \sim \mathfrak{S}_{d}(n) n^{(d-2) / 2}
$$

where the "singular series" is bounded away from zero and infinity:

$$
0<c_{d}<\mathfrak{S}_{d}(n)<C_{d}<\infty
$$

The three-dimensional case is quite subtle. A celebrated result of Legendre/Gauss asserts that n is a sum of three squares if and only if $n \neq 4 a(8 b+7)$. If $n=4^{a}$ then $r_{3}\left(4^{a}\right)=6$. It is known that $r_{3}(n)=O\left(n^{1 / 2+o(1)}\right)$. If there are primitive lattice points, that is $x=\left(x_{1}, x_{2}, x_{3}\right)$ with $\operatorname{gcd}\left(x_{1}, x_{2}, x_{3}\right)=1$ such that $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=n$ (which happens if and only if $n \neq 0,4,7 \bmod 8$) then there is a lower bound of $r_{3}(n)>n^{1 / 2-o(1)}$ (Siegel's theorem).
Exercise 2. $r_{3}\left(4^{a}\right)=6$.

Appendix A. Background on Fourier analysis

The Fourier transform of an L^{1} function on the real line (or more generally on \mathbb{R}^{d}) is defined as

$$
\mathcal{F}(f)=\widehat{f}(y)=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i x \cdot y} d x
$$

It is clearly a linear map (but we haven't specified the domain and range; we will see below that it preserves the "Schwartz space" \mathcal{S}).

An example: In dimension one, let $\mathbf{1}_{[-1 / 2,1 / 2]}$ to be the indicator function of a unit interval (clearly not in $\mathcal{S}(\mathbb{R})$). Then

$$
\widehat{\mathbf{1}}_{[-1 / 2,1 / 2]}(x)=\frac{\sin (\pi x)}{\pi x}
$$

Exercise 3. In dimension 3, take f to be the indicator function of the unit ball $B(0,1) \subset \mathbb{R}^{3}$. Compute \widehat{f}.

Answer: $\widehat{f}(\xi)=-\frac{\cos (2 \pi|\xi|)}{\pi|\xi|^{2}}+\frac{\sin (2 \pi|\xi|)}{2 \pi^{2}|\xi|^{3}}$.
Definition. The Schwartz space $\mathcal{S}\left(\mathbb{R}^{d}\right)$ consisting of smooth functions f so that f and all its derivatives decay rapidly:

$$
\mathcal{S}\left(\mathbb{R}^{d}\right)=\left\{f \in C^{\infty}\left(\mathbb{R}^{d}\right): \forall \alpha, \beta \in \mathbb{N}^{d}, \sup _{x \in \mathbb{R}^{d}}\left|x^{\alpha} \partial^{\beta} f(x)\right|<\infty\right\}
$$

where

$$
x^{\alpha}:=\prod_{j=1}^{d} x_{j}^{\alpha_{j}}, \quad \partial^{\beta} f:=\frac{\partial^{\beta_{1}+\cdots+\beta_{d}} f}{\partial^{\beta_{1}} x_{1} \ldots \partial^{\beta_{d}} x_{d}} .
$$

Clearly $C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \subset \mathcal{S}\left(\mathbb{R}^{d}\right) \subset L^{p}\left(\mathbb{R}^{d}\right)$ for all $p \geq 1$.
Exercise 4. The Gaussian $g(x)=e^{-\pi x^{2}}$ lies in $\mathcal{S}(\mathbb{R})$. Show that $\widehat{g}=g$.
Here are some simple and easily checked properties of the Fourier transform: For $f \in \mathcal{S}$,

- The Fourier transform exchanges differentiation and translation: If $T_{z} f(x)=$ $f(x+z)$, then

$$
\widehat{T_{z} f}(y)=e^{2 \pi i z \cdot x} \widehat{f}(x)
$$

and consequently converts differentiation to multiplication by $2 \pi i x$:

$$
\frac{\widehat{d f}}{d x}=2 \pi i x \cdot \widehat{f}(x)
$$

- Convolution:

$$
(f * g)(x):=\int_{\mathbb{R}^{d}} f(y) g(x-y) d y \quad \Rightarrow \quad \widehat{f * g}(y)=\widehat{f}(y) \cdot \widehat{g}(y)
$$

- The Fourier transform intertwines dilation operators: If $\lambda>0$, and $\left(D_{\lambda} f\right)(x):=$ $f(x / \lambda)$, then

$$
\widehat{\left(D_{\lambda} f\right)}(y)=\lambda^{d} \widehat{f}(\lambda y)
$$

Lemma A.1. If $f \in \mathcal{S}$ then so is \widehat{f}.

Proof. We just treat the one-dimensional case. We need to show that \widehat{f} and all its derivatives decay faster than $1 /|x|^{N}$ for all $N \geq 1$. Since $\partial^{n} \widehat{f}(x)=(-2 \pi i x)^{n} \widehat{f}$, it suffices to just show that \widehat{f} is rapidly decaying. Indeed, again using the relation $\widehat{\partial^{n} f}(x)=(2 \pi i x)^{n} \widehat{f}$ gives

$$
\widehat{f}(x)=\frac{1}{(2 \pi i x)^{n}} \widehat{\partial^{n} f}(x)
$$

so that

$$
|\widehat{f}(x)| \leq \frac{1}{(2 \pi|x|)^{n}} \int_{-\infty}^{\infty}\left|\partial^{n} f(y)\right| d y \ll \frac{\left\|\partial^{n} f\right\|_{\infty}}{|x|^{n}}
$$

where we note that if $F \in \mathcal{S}$ then so are all its derivatives $\partial^{n} f$, so in particular $\partial^{n} f \in L^{1}(\mathbb{R})$.

The main properties of the Fourier transform:

- For functions in \mathcal{S} we have Plancherel's formula

$$
\|\widehat{f}\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

and since \mathcal{S} is dense in L^{2}, the Fourier transform extends to an isometry $\mathcal{F}=\widehat{:} L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$.

- Fourier inversion: For $f \in \mathcal{S}$,

$$
\widehat{\widehat{f})}(x)=f(-x)
$$

so that

$$
f(x)=\int_{\mathbb{R}^{d}} \widehat{f}(y) e^{2 \pi i x \cdot y} d y
$$

- We saw that if $f \in \mathcal{S}$ then so is its Fourier transform, so is in particular rapidly decreasing. We also saw from the example of $f=\mathbf{1}_{[-1 / 2,1 / 2]}$ that its Fourier transform $\sin (\pi x) / \pi x$ does decay at infinity, but not rapidly. The decay at infinity is shared by all L^{1} functions:
Theorem (The Riemann-Lebesgue Lemma). If $f \in L^{1}\left(\mathbb{R}^{d}\right)$ then $\widehat{f}(y) \rightarrow 0$ as $|y| \rightarrow \infty$.
- The Poisson summation formula:

Theorem A.2. For $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$,

$$
\sum_{n \in \mathbb{Z}^{d}} f(n)=\sum_{m \in \mathbb{Z}^{d}} \widehat{f}(m)
$$

[^0]: Date: May 2, 2018.

[^1]: ${ }^{1}$ See (12.4.4) in E.C. Titchmarsh The Theory of the Riemann Zeta-function, 2nd ed., Oxford Univ. Press, Oxford 1986.

