THE CIRCLE PROBLEM OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY

ZEÉV RUDNICK

Contents

1. Lattice point problems	1
1.1. The circle problem	1
1.2. The Dirichlet divisor problem	3
2. A better remainder term	5
2.1. A smooth counting function	6
2.2. A lower bound	9
3. Higher dimension	11
3.1. An Omega result	11
3.2. Sums of d squares - a survey	12
Appendix A. Background on Fourier analysis	13

1. LATTICE POINT PROBLEMS

1.1. The circle problem. Let N(R) denote the number of lattice points in a circle of radius R

$$N(R) := \#\mathbb{Z}^2 \cap B(0,R)$$

where $B(R) = \{x \in \mathbb{R}^2 : |x| \leq R\}, |(x_1, x_2)|^2 = x_1^2 + x_2^2$. We will want to know the asymptotic behaviour of N(R) as $R \to \infty$. More generally, we will consider a nice bounded domain $\Omega \subset \mathbb{R}^2$, say containing the origin, and ask for the number of lattice points in the homogeneously expanding domain $R\Omega$ for $R \to \infty$:

$$N_{\Omega}(R) := \# \mathbb{Z}^2 \cap R\Omega$$

The natural guess would be the area of $R\Omega$, which is $\operatorname{area}(R\Omega) = R^2 \operatorname{area}(\Omega)$. Our first result would be to confirm this guess; we do this only for the circle $\Omega = B(0, 1)$, which has area π .

Proposition 1.1.

$$N(R) = \pi R^2 + O(R)$$

We will see that the result is really in terms of the geometry of the problem:

 $N(R) = \operatorname{area} B(0,R) + O\Big(\operatorname{length}\left(\partial B(0,R)\right)\Big)$

We will give two proofs, essentially similar.

Date: May 2, 2018.

1.1.1. First proof.

Proof. We consider two polygons inscribing and circumscribing the disk B(0, R):

$$P_{-} \subseteq B(0, R) \subseteq P_{+}$$

where

• P_{-} is the union of all squares with unit side \Box_{p} centered at lattice points $p \in \mathbb{Z}^{2} \cap B(0, R)$ so that $\Box_{p} \subseteq B(0, R)$ is wholly contained in the disk. Hence $P_{-} \subseteq B(0, R)$ and area $P_{-} \leq \pi R^{2}$. Moreover

$$L_{-} := \left\{ p \in \mathbb{Z}^{2} : \Box_{p} \subseteq P_{-} \right\} \subseteq \mathbb{Z}^{2} \cap B(0, R)$$

• P_+ is the unit of unit squares \Box_p centered at lattice points $p \in \mathbb{Z}^2$, so that $\Box_p \cap B(0, R) \neq \emptyset$ intersects the disk.

$$\mathbb{Z}^2 \cap B(0,R) \subseteq L_+ := \left\{ p \in \mathbb{Z}^2 : \Box_p \subseteq P_+ \right\}$$

Hence

$$#L_{-} \leq N(R) := #\mathbb{Z}^{2} \cap B(0,R) \leq #L_{+}$$

Now because P_{\pm} are unions of *unit* squares, their area is just the number of squares they contain, that is $\#L_{\pm} = \text{area } P_{\pm}$. Hence

$$\operatorname{area} P_{-} \leq N(R) \leq \operatorname{area} P_{+}$$

The important observation is that every point sufficiently far from the boundary of B(0, R) is inside a unit square \Box_p wholly contained in B(0, R), so that

$$P_{-} \supseteq B(0, R - \sqrt{2})$$

and every unit square \Box_p that intersects B(0,R) is at distance at most $R + \sqrt{2}$ from the origin, so that

$$P_+ \subset B(0, R + \sqrt{2})$$

Hence

$$\pi (R - \sqrt{2})^2 \le \operatorname{area} P_- \le N(R) \le \operatorname{area} P_+ \le \pi (R + \sqrt{2})^2$$

Expanding out gives

$$|N(r) - \pi R^2| \le 2\sqrt{2}\pi R + 2\pi = O(R).$$

Important note: The argument works when we replace the circle B(0, R) by the dilate $R\Omega$ of any fixed *convex* region with (say) smooth boundary.

1.1.2. Second proof.

Proof. We slice the ball B(0, R) by vertical lines (n, y), and count the number of lattice points in each such line segment. The segment L_n with x-coordinate set to be n has y running between $-\sqrt{R^2 - n^2} \le y \le \sqrt{R^2 - n^2}$. Now the number of lattice points in a line segment satisfies

$$\#\{n \in \mathbb{Z} : a \le n \le b\} = (b - a) + O(1)$$

and therefore the line segment L_n contains $2\sqrt{R^2 - n^2} + O(1)$ lattice points. Summing over all admissible n's, namely $-R \leq n \leq R$ we get

$$N(R) = \sum_{-R \le n \le R} \left(2\sqrt{R^2 - n^2} + O(1) \right)$$

= $2 \sum_{-R \le n \le R} \sqrt{R^2 - n^2} + O(R)$
= $r \sum_{1 \le n \le R} \sqrt{R^2 - n^2} + O(R)$

To evaluate the sum, we use summation by parts, with $a_n = 1$, $f(t) = \sqrt{R^2 - t^2}$

$$\sum_{1 \le n \le R} \sqrt{R^2 - n^2} = \left\lfloor t \right\rfloor \sqrt{R^2 - t^2} \Big|_0^R + \int_0^R \left\lfloor t \right\rfloor \frac{t}{\sqrt{R^2 - t^2}} dt$$

Writing $\lfloor t \rfloor = t + O(1)$, we obtain

$$\int_0^R \lfloor t \rfloor \frac{t}{\sqrt{R^2 - t^2}} dt = \int_0^R \frac{t^2}{\sqrt{R^2 - t^2}} dt + O\left(\int_0^R \frac{t}{\sqrt{R^2 - t^2}} dt\right)$$
$$= R^2 \int_0^1 \frac{x^2}{\sqrt{1 - x^2}} dx + O(R) = \frac{\pi}{4} R^2 + O(R)$$

Hence

$$\sum_{1 \le n \le R} \sqrt{R^2 - n^2} = \frac{\pi}{4}R^2 + O(R)$$

which gives $N(R) = \pi R^2 + O(R)$.

The goal is to understand the remainder term in the lattice point problem

$$P(R) := N(R) - \pi R^2$$

We saw that P(R) = O(R).

Open Problem 1. Show that for all $\varepsilon > 0$,

$$P(R) = O(R^{1/2+\varepsilon}) = O\left(\left(\operatorname{length} \partial B(0, R)\right)^{1/2+\varepsilon}\right)$$

1.2. The Dirichlet divisor problem. Let $d(n) = \#\{(a, b) : a, b \ge 1, ab = n\}$ be the number of divisors of n. We have d(1) = 1, d(p) = 2 for p prime, and more generally $d(p^k) = k + 1$. It is a multiplicative function: d(mn) = d(m)d(n) if m, nare coprime. Hence we get a formula in terms of the prime decomposition of n:

$$d(\prod_{j} p_j^{k_j}) = \prod_{j} (k_j + 1)$$

if p_j are distinct primes.

We can compute the *average value* of d(n) by solving a lattice point problem:

$$\frac{1}{N}\sum_{n=1}^{N}d(n) = \frac{1}{N}\#\{(a,b)\in\mathbb{Z}^{2}: a,b\geq 1, a\cdot b\leq N\}$$

so we want the number of lattice points under the hyperbola xy = n and in the positive quadrant $x, y \ge 1$. Thus let

$$D(N) := \#\{(a, b) \in \mathbb{Z}^2 : a, b \ge 1, a \cdot b \le N\}$$

Theorem 1.2.

$$D(N) = N \log N + (2C - 1)N + O(\sqrt{N})$$

where $C = \lim_{N \to \infty} \left(\sum_{n=1}^{N} \frac{1}{n} - \log N \right) = 0.57721 \dots$ is Euler's constant.

Proof. As a first step, we try to reproduce Proof 1.1.2, by slicing the hyperbola with vertical segments

$$L_n = \{(n, y) : 1 \le y \le N\}$$

each of length $length(L_n) = N/n$ and then

$$D(N) = \sum_{1 \le n \le N} \#L_n = \sum_{1 \le n \le N} \left(\text{length}(L_n) + O(1) \right)$$
$$= \sum_{1 \le n \le N} \frac{N}{n} + O(N) = N \left(\log N + C + O(\frac{1}{N}) \right) + O(N)$$

Thus we obtain

 $D(N) = N \log N + O(N)$

Note that the area of the hyperbolic region $\{(x, y) : x, y \ge 1, x \cdot y \le N\}$ is $N \log N$, so again the main term is an area. However, the remainder term O(N) falls far short of the $O(\sqrt{\operatorname{area}(B(0, R))}) = O(R)$ remainder term that we obtained for the circle problem.

1.2.1. Dirichlet's hyperbola method: To overcome this, observe that the estimate

 $#L_n = \operatorname{length}(L_n) + O(1) = N/n + O(1)$

is not good if n is large. So instead, divide the hyperbolic region into three parts (see Figure 1): A square $\Box = \{1 \leq x, y \leq \sqrt{N}\}$, and two symmetric hyperbolic regions

$$H_1 = \{(x, y) : 1 \le x \le \sqrt{N}, \sqrt{N} < y \le \frac{N}{x}\}, \quad H_2 = \{(x, y) : 1 \le y \le \sqrt{N}, \sqrt{N} < x \le \frac{N}{x}\}$$

which contain the same number of lattice points. Hence

$$D(N) = \#\Box + 2\#H_1$$

It is easy to compute $\#\Box$:

$$\#\Box = \left(\lfloor \sqrt{N} \rfloor\right)^2 = \left(\sqrt{N} + O(1)\right)^2 = N + O(\sqrt{N})$$

To compute H_1 , use the slicing method again to obtain

$$#H_1 = \sum_{1 \le n \le \sqrt{N}} \#\{\sqrt{N} < m \le \frac{N}{n}\} = \sum_{1 \le n \le \sqrt{N}} \left(\frac{N}{n} - \sqrt{N} + O(1)\right)$$
$$= N\left(\log\left(\sqrt{N} + O(1)\right) + C + O\left(\frac{1}{\sqrt{N}}\right)\right) - \left(\sqrt{N} + O(1)\right)\sqrt{N} + O(\sqrt{N})$$
$$= \frac{1}{2}N\log N + CN - N + O(\sqrt{N})$$

Thus

$$D(N) = \#\Box + 2\#H_1 = N + O(\sqrt{N}) + 2\left(\frac{1}{2}N\log N + CN - N + O(\sqrt{N})\right)$$

= $N\log N + (2C - 1)N + O(\sqrt{N})$

FIGURE 1. Dirichlet's hyperbola method.

Open Problem 2. Show that $\Delta(N) = O(N^{1/4+\varepsilon})$ for all $\varepsilon > 0$.

2. A better remainder term

We want to show that

Theorem 2.1. $P(R) := N(R) - \pi R^2$ satisfies $P(R) \ll R^{2/3}$

History: The exponent 2/3 was proved by different methods by Voronoi (1903),

Sierpinski (1906), van der Corput (1923). The first improvement on 2/3 = 0.6666... was to 33/50 = 0.66000 by van der Corput (1922). The have been various improvements over the past 100 years, the current record due to Bourgain (2017): 517/824 = 0.627427... The conjecture is that the remainder is $P(R) = O(R^{1/2+o(1)})$.

We will need some basics of Fourier analysis, and estimates on oscillatory integrals (van der Corput).

2.0.1. Approximate identity. Let $0 \leq \Psi \leq 1$ be a bump function on \mathbb{R}^2 , smooth, rotationally symmetric and supported in the ball B(0,1) of radius 1, and normalized so that $\int_{\mathbb{R}^2} \Psi(\vec{x}) d\vec{x} = 1$.

We can create such a function by taking a one-dimensional *even* bump function $\psi \in C^{\infty}(-1,1)$ and taking $\Psi(\vec{x}) := \psi(|\vec{x}|)$, and normalizing appropriately so that $\int_{\mathbb{R}^2} \Psi(\vec{x}) d\vec{x} = 2\pi \int_0^\infty \psi(r) r dr = 1$. (why is it possible?).

For $\varepsilon > 0$, set

$$\Psi_{\varepsilon}(\vec{x}):=\frac{1}{\varepsilon^2}\Psi(\frac{\vec{x}}{\varepsilon})$$

which is now supported in the ball $B(0,\varepsilon)$ and still has total mass 1.

Note: Such a family Ψ_{ε} is an *approximate identity*: For various classes of function spaces, we have

$$f * \Psi_{\varepsilon} \to f$$
, as $\varepsilon \to 0$

in the appropriate topology.

Let χ be the indicator function of the unit ball B(0,1), and set

$$\chi_{\varepsilon} := \chi * \Psi_{\varepsilon}$$

Lemma 2.2. χ_{ε} is supported in $B(0, 1 + \varepsilon)$ and coincides with χ in the smaller ball $B(0, 1 - \varepsilon)$:

$$\chi_{\varepsilon}(\vec{x}) = \begin{cases} 1, & |\vec{x}| < 1 - \varepsilon \\ 0, & |\vec{x}| > 1 + \varepsilon \end{cases}$$

Moreover, $0\chi_{\epsilon} \leq 1$.

Proof. By definition

$$\chi_{\varepsilon}(x) = \int_{B(0,\varepsilon)} \frac{1}{\varepsilon^2} \Psi(\frac{z}{\varepsilon}) \chi(x-z) dz$$

Now if $|x| \leq 1 - \varepsilon$ and $z \in B(0, \varepsilon)$ then

$$|x - z| \le |x| + |z| \le 1 - \varepsilon + \varepsilon = 1$$

so that $\chi(x-z) = 1$, and then

$$\chi_{\varepsilon}(x) = \int_{B(0,\varepsilon)} \Psi_{\varepsilon}(z) \chi(x-z) dz = \int_{B(0,\varepsilon)} \Psi_{\varepsilon}(z) dz = 1.$$

If $|x| > 1 + \varepsilon$, and $z \in B(0, \varepsilon)$ then

$$|x-z| \ge \left| |x| - |z| \right| = |x| - |z| > 1 + \varepsilon - \varepsilon = 1$$

and then $\chi(x-z) = 0$, so that

$$\chi_{\varepsilon}(x) = \int_{B(0,\varepsilon)} \Psi_{\varepsilon}(z)\chi(x-z)dz = 0$$

for all $x \notin B(0, 1 + \varepsilon)$.

To see that $0 \le \chi_{\epsilon} \le 1$, just observe that since both χ and Ψ are non-negative, so is their convolution, and since $\chi \le 1$ we have

$$\chi_{\varepsilon}(x) = \int \Psi_{\varepsilon}(z)\chi(x-z)dz \le \int \Psi_{\varepsilon}(z) \cdot 1 \, dz = 1$$

2.1. A smooth counting function. Define

$$N_{\varepsilon}(R) = \sum_{n \in \mathbb{Z}^2} \chi_{\varepsilon}(\frac{n}{R})$$

which counts lattice points with the smooth weight χ_{ε} . We claim that

Lemma 2.3. For $0 < \varepsilon \ll 1$

$$N_{\varepsilon}(\frac{R}{1+\varepsilon}) \le N(R) \le N_{\varepsilon}(\frac{R}{1-\varepsilon})$$

Proof. We first show

$$N(R(1-\varepsilon)) \le N_{\varepsilon}(R) \le N(R(1+\varepsilon))$$

Indeed, to be counted in the sum for $N_{\varepsilon}(R)$, we must have $n/R \in \operatorname{supp} \chi_{\varepsilon} \subseteq B(0, 1 + \varepsilon)$, so that $|n/R| \leq 1 + \varepsilon$. Since $\chi_{\varepsilon} \leq 1$, we obtain

$$N_{\varepsilon}(R) = \sum_{n \in \mathbb{Z}^2} \chi_{\varepsilon}(\frac{n}{R}) \le \sum_{|n| \le R(1+\varepsilon)} 1 = N\Big(R(1+\varepsilon)\Big)$$

 $\mathbf{6}$

Likewise, if $|n/R| < 1 - \varepsilon$ then $\chi_{\varepsilon}(n/R) = 1$, so that

$$N_{\varepsilon}(R) \ge \sum_{|n| < R(1-\varepsilon)} 1 = N\Big(R(1-\varepsilon)\Big)$$

Changing variables $R \mapsto R/(1 \pm \varepsilon)$ we deduce our claim.

 $2.1.1. \ Evaluating \ the \ smooth \ counting \ function.$

Lemma 2.4.

$$N_{\varepsilon}(R) = \pi R^2 + O\left(\frac{1}{\varepsilon^{1/2}}\right)$$

Proof. We use Poisson summation to transform N_{ε} :

$$N_{\varepsilon}(R) = \sum_{n \in \mathbb{Z}^2} \chi_{\varepsilon}(\frac{n}{R}) = \sum_{m \in \mathbb{Z}^2} R^2 \widehat{\chi}_{\varepsilon}(Rm)$$

since the Fourier transform of a dilated function f(x/R) is $R^2 \hat{f}(Ry)$.

Now the Fourier transform of the convolution χ_{ε} is

$$\widehat{\chi}_{\varepsilon} = \widehat{\chi * \Psi_{\varepsilon}} = \widehat{\chi} \cdot \widehat{\Psi}_{\varepsilon}$$

and $\widehat{\Psi}_{\varepsilon}(y) = \widehat{\Psi}(\varepsilon y)$, so that

$$\widehat{\chi}_{\varepsilon}(Rm) = \widehat{\chi}(Rm) \Psi(R\varepsilon m)$$

and hence

$$N_{\varepsilon}(R) = \sum_{m \in \mathbb{Z}^2} R^2 \widehat{\chi}(Rm) \widehat{\Psi}(R\varepsilon m)$$
$$= \widehat{\chi}(0)R^2 + R^2 \sum_{m \neq 0} \widehat{\chi}(Rm) \widehat{\Psi}(R\varepsilon m)$$

We have

$$\widehat{\chi}(0) = \int_{\mathbb{R}^2} \chi(y) dy = \operatorname{area} B(0, 1) = \pi.$$

It does no great harm to pretend to that Ψ is compactly supported (rather than just rapidly decaying), so that the sum is truncated at $R\varepsilon |m| \ll 1$, or $|m| < 1/(R\varepsilon)$. Thus up to an error which we will estimate later ???

$$N_{\varepsilon}(R) = \pi R^2 + O\left(\sum_{0 < |m| < (R\varepsilon)^{-1}} R^2 \widehat{\chi}(Rm)\right)$$

Now we use van der Corput's bound ??

$$\widehat{\chi}(Rm) \ll (R|m|)^{-3/2}, \quad |m| \geq 1$$

to obtain

$$\sum_{0 < |m| < (R\varepsilon)^{-1}} R^2 \widehat{\chi}(Rm) \ll R^{1/2} \sum_{0 < |m| < (R\varepsilon)^{-1}} \frac{1}{|m|^{3/2}}$$

We estimate the lattice sum (using partial summation) by the integral (exercise 1)

$$\sum_{0 < |m| < M} \frac{1}{|m|^{3/2}} \ll \int_{1 < |x| < M} \frac{dx}{|x|^{3/2}} \ll \int_{1}^{M} \frac{rdr}{r^{3/2}} \ll M^{1/2}$$

Thus

$$R^{1/2} \sum_{0 < |m| < (R\varepsilon)^{-1}} \frac{1}{|m|^{3/2}} \ll R^{1/2} (R\varepsilon)^{-1/2} = \varepsilon^{-1/2}$$

which gives $N_{\varepsilon}(R) = \pi R^2 + O(\varepsilon^{-1/2}).$

Exercise 1.

$$\sum_{0 < |m| < M} \frac{1}{|m|^{3/2}} \ll M^{1/2}$$

We can now prove Theorem 2.1: We use Lemma 2.3 and Lemma 2.4 to deduce that

$$\pi(\frac{R}{1+\varepsilon})^2 + O(\varepsilon^{-1/2}) \le N(R) \le \pi(\frac{R}{1-\varepsilon})^2 + O(\varepsilon^{-1/2})$$

Now

$$\left(\frac{R}{1\pm\varepsilon}\right)^2 = R^2(1+O(\varepsilon)) = R^2 + O(R^2\varepsilon)$$

and so

$$N(R) = \pi R^2 + O\left(R^2\varepsilon + \varepsilon^{-1/2}\right)$$

Choosing $\varepsilon^{-1/2} = R^2 \varepsilon$, that is $\varepsilon = R^{-4/3}$, gives

$$N(R) = \pi R^2 + O(R^{2/3})$$

as claimed.

2.2. A lower bound. We next show that the conjectured exponent of $P(R) = O(R^{1/2+\varepsilon})$ cannot be improved, by showing

Theorem 2.5. There is some c > 0 so that there are arbitrarily large R for which $|P(R)| > cR^{1/2}$.

Let S(R) be the normalized remainder term $P(R)/R^{1/2}$:

$$S(t) = \frac{N(t) - \pi t^2}{\sqrt{t}} = t^{-1/2} P(t)$$

We invoke, without providing a proof¹, a series representation of S(t):

Proposition 2.6. For any $T \gg 1$, uniformly for $t \in [T/(10), 10T]$

$$S(t) = -\frac{1}{\pi} \sum_{\substack{0 < |\vec{m}| \le T^{3/4} \\ 0 \neq \vec{m} \in \mathbb{Z}^2}} \frac{\cos(2\pi |\vec{m}| \cdot t + \frac{\pi}{4})}{|\vec{m}|^{3/2}} + O(T^{-1/4 + o(1)})$$

Motivation: We saw that the Fourier transform of the unit disk played a role in the formula for the smooth counting function. We can pretend that we can apply Poisson summation to the sharp counting function N(R), and try to write

$$N(R) - \pi R^2 \, ``= \, ``\sum_{0 \neq \vec{m} \in \mathbb{Z}^2} R^2 \widehat{\chi}(R\vec{m})$$

We expressed $\hat{\chi}$ as an oscillatory integral

$$\widehat{\chi}(\vec{y}) = \frac{i}{2\pi |\vec{y}|} \int_0^{2\pi} \langle \dot{\gamma}(t), \frac{y^{\perp}}{|y|} \rangle e^{i2\pi |\vec{y}| \langle \gamma(t), \frac{\vec{y}}{|\vec{m}|} \rangle} dt$$

Now recall the stationary phase asymptotics of Theorem ?? (not just the van der Corput bound),

$$\int A(x)e^{i\lambda(\phi(x)}dx \sim e^{i\frac{\pi}{4}\operatorname{sign}(\phi''(x_0))}A(x_0)\sqrt{\frac{2\pi}{|\phi''(x_0)|}} \cdot \frac{e^{i\lambda\phi(x_0)}}{\sqrt{\lambda}}, \quad \text{as } \lambda \to +\infty,$$

which give

$$R^2 \widehat{\chi}(R\vec{m}) \sim *R^{1/2} \frac{\cos(2\pi |\vec{m}|R + \frac{\pi}{4})}{|\vec{m}|^{3/2}}$$

which is the form that appears in Proposition 2.6.

2.2.1. Proof of Theorem 2.5. . To get a lower bound on |P(R)|, it suffices to show that there is some c > 0 so that for arbitrarily large t, we have |S(t)| > c. To do so, we consider the integral

$$J(T) := e^{i\pi/4} \int_T^{2T} S(t)e(t)w(\frac{t}{T})\frac{dt}{T}$$

where $w(x) \in C_c^{\infty}[1,2]$ is a smooth weight function, supported in [1,2], and of total mass unity: $\int w(x)dx = 1$. It suffices to show that

$$\lim_{T \to \infty} J(T) = -\frac{2}{\pi} \neq 0$$

since if we had S(t) = o(1) then the integral J(T) = o(1) would also tend to zero.

 $^{^1\}mathrm{See}$ (12.4.4) in E.C. Titchmarsh The Theory of the Riemann Zeta-function, 2nd ed., Oxford Univ. Press, Oxford 1986.

Plugging in Proposition 2.6, we see that

$$J(T) = -\frac{1}{\pi} \sum_{\substack{0 < |\vec{m}| \le T^{3/4} \\ 0 \neq \vec{m} \in \mathbb{Z}^2}} \frac{1}{|\vec{m}|^{3/2}} e^{i\pi/4} \int \cos(2\pi |\vec{m}| \cdot t + \frac{\pi}{4}) e(t) w(\frac{t}{T}) \frac{dt}{T} + o(1).$$

The integral is essentially a Fourier transform of the dilate of w:

$$e^{i\pi/4} \int \cos(2\pi |\vec{m}| \cdot t + \frac{\pi}{4}) e(t) w(\frac{t}{T}) \frac{dt}{T} = \frac{1}{2} \widehat{w} \Big(T(|\vec{m}| - 1) \Big) + \frac{i}{2} \widehat{w} \Big(T(|\vec{m}| + 1) \Big).$$

There are 4 vectors of norm one $|\vec{m}| = 1$, which contribute the term

$$-\frac{1}{\pi}4\frac{1}{2}\widehat{w}(0) = -\frac{2}{\pi}\int_{-\infty}^{\infty}w(x)dx = -\frac{2}{\pi}.$$

We now use the rapid decay of the Fourier transform of the weight function w, say $|\widehat{w}(y)| < y^{-10}$ for $|y| \ge 1$, to find that for any nonzero \vec{m} ,

$$\widehat{w}\Big(T(|\vec{m}|+1)\Big) \ll \frac{1}{(T|\vec{m}|)^{10}}$$

and if $|\vec{m}| \neq 1, 0$ then $|\vec{m}| - 1 \ge \sqrt{2} - 1 > \min(\sqrt{2} - 1, |\vec{m}|/2),$

$$\widehat{w}\Big(T(|\vec{m}|-1)\Big) \ll \frac{1}{(T|\vec{m}|)^{10}}, \qquad |\vec{m}| \neq 1, 0.$$

Hence

$$J(T) = -\frac{2}{\pi} + O\Big(\sum_{\vec{m}\neq 0} \frac{1}{|\vec{m}|^{3/2}} \frac{1}{(T|\vec{m}|)^{10}}\Big).$$

Since the sum $\sum_{\vec{m}\neq 0} \frac{1}{|\vec{m}|^{3/2+10}} < \infty$ is convergent, we find

$$J(T) = -\frac{2}{\pi} + O(\frac{1}{T^{10}})$$

as claimed.

3. Higher dimension

3.1. An Omega result. Let $N_d(R)$ be the number of lattice points in the *d*-dimensional ball of radius R:

$$N_d(R) = \#\mathbb{Z}^d \cap B(0, R)$$

Arguing as in the two-dimensional case shows that

$$N_d(R) = \omega_d R^d + O(R^{d-1})$$

where $\omega_d = \operatorname{vol} B(0, 1)$. Let $P_d(r) = N_d(R) - \omega_d R^d$ be the remainder term. We want to note that in dimension $d \geq 4$, it is <u>not</u> the case that we get square root cancellation, that is it is not true that $P_d(R)$ is $O(R^{(d-1)/2})$. To see this, we will show that $P_d(R) = \Omega(R^{d-2})$, that is there is some c > 0 and arbitrarily large R's so that $|P(R)| > cR^{d-2}$. Thus if d-2 > (d-1)/2, i.e. d > 3 (so $d \geq 4$), we cannot get square root cancellation.

The reason will be that there will be arbitrarily large R's so that on the boundary of the sphere $\{|x| = R\}$ there are $\gg R^{d-2}$ lattice points. Once we establish this, we pick such a sequence of R's, and note that

$$R^{d-2} \ll \#\{x \in \mathbb{Z}^d : |x| = R\} \le N_d(R + \frac{1}{R^2}) - N_d(R - \frac{1}{R^2})$$
$$= \omega_d \left((R + \frac{1}{R^2})^d - (R - \frac{1}{R^2})^d \right) + P_d(R + \frac{1}{R^2}) - P_d(R - \frac{1}{R^2})$$
$$= O(R^{d-3}) + P_d(R + \frac{1}{R^2}) - P_d(R - \frac{1}{R^2})$$

If we assume that $|P_d(R)| \ll R^{\theta}$ then we obtain

$$R^{d-2} \ll R^{d-3} + R^{\theta}$$

which forces $\theta \ge d-2$. Thus $P_d(R) = \Omega(R^{d-2})$.

Now to see that there are arbitrarily large R's for which $\mathbb{Z}^d \cap \{|x| = R\} \gg R^{d-2}$: Let $d \ge 2$, and for $n \ge 0$ an integer let

$$r_d(n) = \#\{x \in \mathbb{Z}^d : \sum_{j=1}^d x_j^2 = n\}$$

be the number of representations of an integer n as a sum of d squares. We show that $r_d(n) = \Omega(n^{(d-2)/2})$ which is our claim.

Now if $r_d(n) = o(n^{(d-2)/2})$ then we would get

$$\sum_{n=1}^{N} r_d(n) = o(\sum_{n=1}^{N} n^{\frac{d}{2}-1}) = o(N^{d/2})$$

But

$$\sum_{n=1}^{N} r_d(n) = N_d(\sqrt{N}) \sim \omega_d N^{d/2}$$

which gives a contradiction.

3.2. Sums of d squares - a survey. The problem of understanding which integers are sums of d squares, and if so in how many ways, is a very old topic. We will later discuss the two dimensional case.

It is an old result that every positive integer is a sum of 4 squares (Lagrange's four-square theorem), so that $r_4(n) \neq 0$ for all $n \geq 0$. For prime p, we have (Jacobi)

$$r_4(p) = 8(p+1)$$

and $r_4(n)/8$ is multiplicative, with

$$r_4(n) = 8 \sum_{\substack{d \mid n \\ 4 \nmid d}} d$$

For n odd we have $r_4(n) = n^{1+o(1)}$. (note that this is the exponent (d-2)/2 = 1 here).

For $d \ge 5$, we certainly have $r_d(n) \ge r_4(n) > 0$. The "circle method" shows that $r_d(n) \sim \mathfrak{S}_d(n) n^{(d-2)/2}$

where the "singular series" is bounded away from zero and infinity:

$$0 < c_d < \mathfrak{S}_d(n) < C_d < \infty$$

The three-dimensional case is quite subtle. A celebrated result of Legendre/Gauss asserts that n is a sum of three squares if and only if $n \neq 4a(8b+7)$. If $n = 4^a$ then $r_3(4^a) = 6$. It is known that $r_3(n) = O(n^{1/2+o(1)})$. If there are primitive lattice points, that is $x = (x_1, x_2, x_3)$ with $gcd(x_1, x_2, x_3) = 1$ such that $x_1^2 + x_2^2 + x_3^2 = n$ (which happens if and only if $n \neq 0, 4, 7 \mod 8$) then there is a lower bound of $r_3(n) > n^{1/2-o(1)}$ (Siegel's theorem).

Exercise 2. $r_3(4^a) = 6.$

APPENDIX A. BACKGROUND ON FOURIER ANALYSIS

The Fourier transform of an L^1 function on the real line (or more generally on \mathbb{R}^d) is defined as

$$\mathcal{F}(f) = \widehat{f}(y) = \int_{\mathbb{R}^d} f(x) e^{-2\pi i x \cdot y} dx$$

It is clearly a linear map (but we haven't specified the domain and range; we will see below that it preserves the "Schwartz space" S).

An example: In dimension one, let $\mathbf{1}_{[-1/2,1/2]}$ to be the indicator function of a unit interval (clearly not in $\mathcal{S}(\mathbb{R})$). Then

$$\widehat{\mathbf{1}}_{[-1/2,1/2]}(x) = \frac{\sin(\pi x)}{\pi x}$$

Exercise 3. In dimension 3, take f to be the indicator function of the unit ball $B(0,1) \subset \mathbb{R}^3$. Compute \hat{f} .

 $B(0,1) \subset \mathbb{R}^3. Compute \ \widehat{f}.$ Answer: $\widehat{f}(\xi) = -\frac{\cos(2\pi|\xi|)}{\pi|\xi|^2} + \frac{\sin(2\pi|\xi|)}{2\pi^2|\xi|^3}.$

Definition. The Schwartz space $S(\mathbb{R}^d)$ consisting of smooth functions f so that f and all its derivatives decay rapidly:

$$\mathcal{S}(\mathbb{R}^d) = \{ f \in C^\infty(\mathbb{R}^d) : \forall \alpha, \beta \in \mathbb{N}^d, \sup_{x \in \mathbb{R}^d} |x^\alpha \partial^\beta f(x)| < \infty \}$$

where

$$x^{\alpha} := \prod_{j=1}^{d} x_j^{\alpha_j}, \quad \partial^{\beta} f := \frac{\partial^{\beta_1 + \dots + \beta_d} f}{\partial^{\beta_1} x_1 \dots \partial^{\beta_d} x_d}.$$

Clearly $C_c^{\infty}(\mathbb{R}^d) \subset \mathcal{S}(\mathbb{R}^d) \subset L^p(\mathbb{R}^d)$ for all $p \ge 1$.

Exercise 4. The Gaussian $g(x) = e^{-\pi x^2}$ lies in $\mathcal{S}(\mathbb{R})$. Show that $\widehat{g} = g$.

Here are some simple and easily checked properties of the Fourier transform: For $f\in\mathcal{S},$

• The Fourier transform exchanges differentiation and translation: If $T_z f(x) = f(x+z)$, then

$$\widehat{T_z f}(y) = e^{2\pi i z \cdot x} \widehat{f}(x)$$

and consequently converts differentiation to multiplication by $2\pi i x$:

$$\frac{\widehat{df}}{dx} = 2\pi i x \cdot \widehat{f}(x)$$

• Convolution:

$$(f*g)(x) := \int_{\mathbb{R}^d} f(y)g(x-y)dy \quad \Rightarrow \quad \widehat{f*g}(y) = \widehat{f}(y)\cdot \widehat{g}(y)$$

• The Fourier transform intertwines dilation operators: If $\lambda > 0$, and $(D_{\lambda}f)(x) := f(x/\lambda)$, then

$$\widehat{(D_{\lambda}f)}(y) = \lambda^d \widehat{f}(\lambda y)$$

Lemma A.1. If $f \in S$ then so is \widehat{f} .

Proof. We just treat the one-dimensional case. We need to show that \hat{f} and all its derivatives decay faster than $1/|x|^N$ for all $N \ge 1$. Since $\partial^n \hat{f}(x) = (-2\pi i x)^n \hat{f}$, it suffices to just show that \hat{f} is rapidly decaying. Indeed, again using the relation $\widehat{\partial^n f}(x) = (2\pi i x)^n \hat{f}$ gives

$$\widehat{f}(x) = \frac{1}{(2\pi i x)^n} \widehat{\partial^n f}(x)$$

so that

$$|\widehat{f}(x)| \leq \frac{1}{(2\pi|x|)^n} \int_{-\infty}^{\infty} |\partial^n f(y)| dy \ll \frac{||\partial^n f||_{\infty}}{|x|^n}$$

where we note that if $F \in S$ then so are all its derivatives $\partial^n f$, so in particular $\partial^n f \in L^1(\mathbb{R})$.

The main properties of the Fourier transform:

• For functions in \mathcal{S} we have Plancherel's formula

$$|f||_{L^2(\mathbb{R}^d)} = ||f||_{L^2(\mathbb{R}^d)}$$

and since S is dense in L^2 , the Fourier transform extends to an isometry $\mathcal{F} = \hat{}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d).$

• Fourier inversion: For $f \in \mathcal{S}$,

$$(\widehat{f})(x) = f(-x)$$

so that

$$f(x) = \int_{\mathbb{R}^d} \widehat{f}(y) e^{2\pi i x \cdot y} dy$$

• We saw that if $f \in S$ then so is its Fourier transform, so is in particular rapidly decreasing. We also saw from the example of $f = \mathbf{1}_{[-1/2,1/2]}$ that its Fourier transform $\sin(\pi x)/\pi x$ does decay at infinity, but not rapidly. The decay at infinity is shared by all L^1 functions:

Theorem (The Riemann-Lebesgue Lemma). If $f \in L^1(\mathbb{R}^d)$ then $\hat{f}(y) \to 0$ as $|y| \to \infty$.

• The Poisson summation formula:

Theorem A.2. For $f \in \mathcal{S}(\mathbb{R}^d)$,

$$\sum_{n\in\mathbb{Z}^d}f(n)=\sum_{m\in\mathbb{Z}^d}\widehat{f}(m)$$